

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

SCHOOL OF NATURAL AND APPLIED SCIENCES DEPARTMENT OF BIOLOGY, CHEMISTRY AND PHYSICS

QUALIFICATION: BACHELOR OF SCIENCE							
QUALIFICATION CODE: 07BOSC LEVEL: 7							
COURSE CODE: OCH701S	COURSE NAME: ORGANIC CHEMISTRY 2						
SESSION: JULY 2023	PAPER: THEORY						
DURATION: 3 HOURS	MARKS: 100						

SUPPLEMENTARY / SECOND OPPORTUNITY EXAMINATION QUESTION PAPER								
EXAMINER(S)	DR. MARIUS MUTORWA							
MODERATOR:	DR. RENATE HANS							

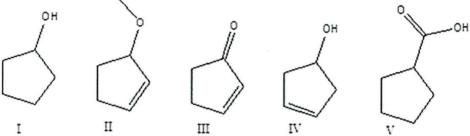
INSTRUCTIONS									
1.	Answer ALL the questions.								
2. Write clearly and neatly.									
3. Number the answers clearly									
4.	All written work must be done in blue or black in and sketches								
*	must be done in pencil								
5.	No book, notes and other additional aids are allowed								

A.

B. PERMISSIBLE MATERIALS

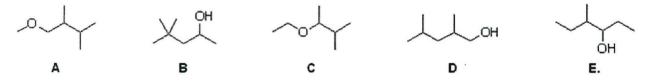
Non-programmable Calculators

C. ATTACHMENTS

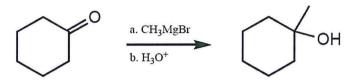

NMR and IR Spectral Data, pKa Chart and Periodic Table

THIS QUESTION PAPER CONSISTS OF 13 PAGES (Including this front page)

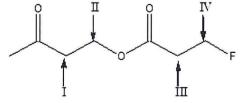
QUESTION 1: Multiple Choice Questions

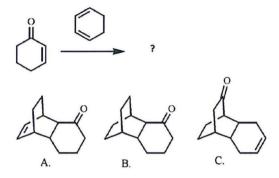

[50]

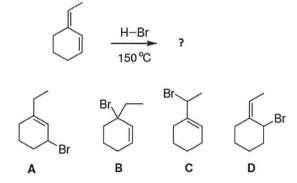
- There are 25 multiple choice questions and each question carries 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- 1.1 Which of the following compounds will show a broad absorption around 3300 cm⁻¹ and at 1650 cm⁻¹?

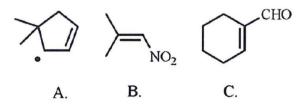


- A. I
- B. II
- C. III
- D. IV
- E. V
- 1.2 Which of the following compounds will have odd m/z value for the molecular ion?


- A. I
- B. II
- C. III
- D. IV
- E. None of the above
- 1.3 Identify the structure for a compound that is consistent with the following data.
 - a. The molecular ion peak has m/z = 116
 - b. The base peak is at m/z = 59.
 - c. The compound is composed of C, H and O atoms.
 - d. The IR spectrum shows a strong absorbance at 3257 cm⁻¹.


- A. A
- B. B
- C. C
- D. D
- E. E
- 1.4 For the following reaction sequence (it is not necessary to understand the chemistry) what significant change(s) would be expected by IR (ignoring C-H absorptions)?


- A. A peak around 1710 cm⁻¹ would disappear and a new peak around 3300-3500 cm⁻¹ would appear.
- B. A peak around 1710 cm-1 would appear and a new peak around 1650 cm⁻¹ would disappear.
- C. A peak around 2150 cm-1 would disappear and a new peak around 3300-3500 cm⁻¹ would appear.
- D. No change would be observed.
- 1.5 A compound has two signals in the ¹³C NMR spectrum and a single signal in the ¹H NMR spectrum. Which is the most likely compound?
 - A. dimethyl ether
 - B. diethyl ether
 - C. 2,2-dimethylpropane
 - D. methyl ethanoate
- 1.6 How many proton NMR singlets will 2-bromo-3-methyl-2-butene exhibit?
 - A. 1
 - B. 2
 - C. 3
 - D. 4
 - E. 5
- 1.7 Which of the indicated protons in the following compound would appear most upfield in the 1H NMR spectrum?

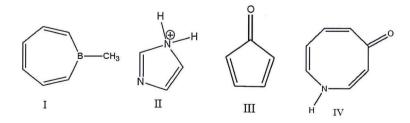

- A. I
- B. II
- C. III
- D. IV
- E. I & IV
- 1.8 What is the product of the following reaction?

- A. A
- B. B
- C. C
- D. None of the above
- 1.9 Treatment of the diene below gives a mixture of products. Predict the major product under the given conditions.

- A. A
- B. B
- C. C
- D. D
- 1.10 Which of the following compound (s) show conjugation?

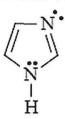
- A. A
- B. B
- C. C
- D. B & C
- E. All of the above

1.11 Why is the following compound not aromatic?



- A. It has 4n electrons
- B. It isn't planar
- C. It has 4n+2 electrons and the π electron system in continuous
- D. It isn't planar and the $\boldsymbol{\pi}$ electron system is not continuous

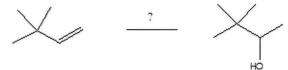
1.12 Name the following compound.


- A. 2,3-dibromoaniline
- B. 2-bromo-5-aminobromobenzene
- C. 2-bromo-3-aminobromobenzene
- D. ortho-dibromonitrobenzene

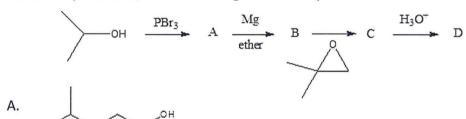
1.13 Which one of the following compound is aromatic?

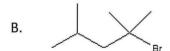
- A. I
- B. II
- C. III
- D. IV

1.14 How many π -orbital electrons are in the following molecule?



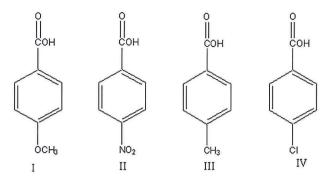
- A. 4
- B. 6
- C. 8
- D. 10


1.15 Which is the best reaction sequence for preparing the following compound from benzene?


- A. A
- B. B
- C. C
- D. D
- 1.16 Both LiAlH₄ and NaBH₄ are reducing agents. Which statement about these reagents is true?
 - A. Both reagents contain polar metal-hydrogen bonds. The polarity of the B-H bond is greater than the polarity of the Al-H bond, so LiAlH₄ is the stronger reducing agent.
 - B. Both reagents contain polar metal-hydrogen bonds. The polarity of the B-H bond is greater than the polarity of the Al-H bond, so LiAlH₄ is the weaker reducing agent.
 - C. Both reagents contain polar metal-hydrogen bonds. The polarity of the B-H bond is less than the polarity of the Al-H bond, so LiAlH₄ is the stronger reducing agent.
 - D. Both reagents contain polar metal-hydrogen bonds. The polarity of the B-H bond is less than the polarity of the Al-H bond, so LiAlH₄ is the weaker reducing agent.
- 1.17 At which site on the following substrate will electrophilic substitution be most likely to occur, in the formation of a tri-substituted product?

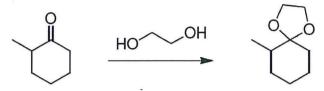
- A. A
- B. B
- C. C
- D. D
- 1.18 Which reaction can accomplish the following transformation in good yield:

- A. H+ / H₂O
- B. oxymercuration /oxidation
- C. hydroboration/oxidation
- D. reaction with NaOH
- 1.19 The reaction between 4-methyl-1-pentanol and HBr to yield 4-methyl-1-pentene is probably:
 - A. an SN1 reaction involving protonated alcohol as a substrate
 - B. an SN2 reaction involving protonated alcohol as a substrate
 - C. an E1 reaction involving protonated alcohol as a substrate
 - D. an E2 reaction involving protonated alcohol as a substrate
- 1.20 The final product D, in the following reaction sequence would be?



C. OH

D. OH


1.21 Rank the following acids in decreasing (strongest to weakest) order of acidity.

- A. I > III > IV > II
- B. II > IV > III > I
- C. II > III > I > IV
- D. I > IV > II > III
- E. || > |V > | > |||
- 1.22 What is the first step in nucleophilic addition to a carbonyl compound under acidic conditions?
 - A. protonation of the nucleophile
 - B. addition of the nucleophile
 - C. protonation of the carbonyl carbon
 - D. protonation of the carbonyl oxygen
- 1.23 What is the correct IUPAC name for the following compound?

- A. 2,6,6-trimethylbenzaldehyde
- B. 1,1,3-trimethylbenzaldehyde
- C. 2,6,6-trimethyl-1,3-cyclohexadienecarbaldehyde
- D. 1,1,3-trimethyl-2,4-cyclohexadienecarbaldehyde
- 1.24 Predict the product for the following reaction.

- A. 3-methyl-2-pentanone
- B. 3-methyl -1-propanol
- C. 2-methyl-1-butanol
- D. 3-methyl-2-pentanol
- 1.25 Which of the following will allow the reaction below to proceed as written?

- A. Addition of heat
- B. Addition of an acid catalyst
- C. Addition of a base catalyst
- D. Addition of heat and an acid catalyst

END OF SECTION A

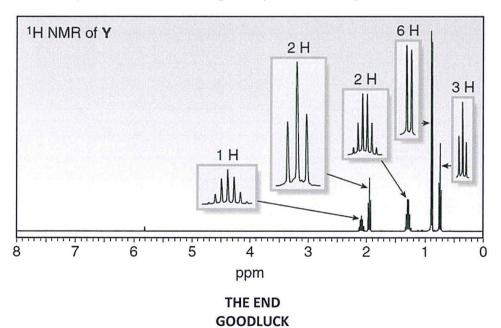
SECTION B [50]

QUESTION 2 [16]

Identify the lettered intermediates (A-H) in the following reaction sequence.

Note: 2 marks for each intermediate

Br NaCN A
$$\xrightarrow{H_3O^+}$$
 B $\xrightarrow{SOCl_2}$ D $\xrightarrow{[1] (CH_3)_2CuLi}$ E $\xrightarrow{[1] LiAlH_4}$ C $\xrightarrow{[2] H_2O}$ C $\xrightarrow{[1] DIBAL-H}$ G $\xrightarrow{[1] CH_3Li}$ H PCC


QUESTION 3 [16]

Draw a full detailed mechanism for the reaction below. In order to receive full marks, show all intermediates and flow of electrons using the appropriate arrows.

Note: 1 mark for each appropriate arrow

QUESTION 4 [18]

Use the ${}^{1}H$ NMR spectrum provided below to identify the structure of compound Y with Molecular Formula $C_7H_{14}O$. Compound Y shows a strong absorption in its IR spectrum at 1713 cm ${}^{-1}$.

¹H NMR SPECTRAL DATA

Characteristic Chemical Shifts of Common Types of Protons

Type of proton	Chemical shift (ppm)	Type of proton	Chemical shift (ppm)
С–Н _{sp³}	0.9–2	C=C H	4.5–6
• RCH ₃ • R ₂ CH ₂ • R ₃ CH	~0.9 ~1.3 ~1.7	—Н	6.5–8
Z C-C-H Z = C, O, N	1.5–2.5	O R C H	9–10
—С≡С−Н	~2.5	R C OH	10–12
$C-H$ Sp^3 Z $Z = N, O, X$	2.5–4	RO—H or R—N—H	1–5

Important IR Absorptions

	. le o . rem ri . r . r . r . r . r . r . r . r . r						
Bond type	d type Approximate \tilde{v} (cm ⁻¹)						
O-H	3600–3200	strong, broad					
N-H	3500–3200	medium					
C-H	~3000						
 C_{sp³}-H 	3000-2850	strong					
 C_{sp}²-H 	3150–3000	medium					
 C_{sp}-H 	3300	medium					
C≡C	2250	medium					
C≡N	2250	medium					
C=O	1800-1650 (often ~1700)	strong					
C=C	1650	medium					
	1600, 1500	medium					

pKa Chart

conjugate acid conjugate base		<u>co</u>	onjugate acid	conjugate base	
sulfuric acid $H_2SO_4 \longrightarrow HSO_4^-$	-10	hydrogen cyanide	H-C≣N:	- : c≡n:	9.1
hydroiodic acid ⊢II ——— I	-9		ЮH	(cyanide)	
hydrobromic acid HBr ———————————————————————————————————	-8	phenols			10
hydrochloric acid HCI: :CI:	-7	water	H;0; H →	н	15.7
carbocations +	-3	primary alcohols	<u>,∵</u> , H —	(hydroxide)	16
protonated alcohol H	-2.4	alkynes	C≡C-H	(alkoxides) C≡C: (acetylide anions)	26
hydronium ion H H H H	-1.7	hydrogen		:H (hydride)	35
nitric acid $HNO_3 \longrightarrow NO_3$	-1.3	ammonia/amines	R ^N →	R H	36
hydrofluoric acid HF	3.2			(amide bases)	
carboxylic acids H — io:	4.8	alkanes	→ H	<u> </u>	~60

hydrogen																		
1 1																		helium 2
H																		
																		He
1.0079 Ithium	beryllium																	4.0026
3	4												boron 5	carbon 6	ni:rogen 7	cxygen	fluorine	neon
1:														22		8	9	10
	Be												В	C	N	0	F	Ne
3.541	9.0122												1C.811	12.011	14.007	15.999	18.998	20.160
sodium i	magnesium 12												aumin um	s licon	phosphorus	sulfur	chlorire	argon
													13	14	15	16	17	18
Na	Mg												Al	Si	P	S	CI	Ar
22.990	24.305												26.982	28.036	30.974	32.065	35.453	39.948
potassium	calcium		scandium	titanium	muitenev	chromium	manganese	iror	∞balt	nickel	copper	znc	gallium	germanium	arsenic	selenium	bromine	krypton
19	20		21	22	23	24	25	_26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidium	40.079		44.956	47.867	50.942	51.396	54 938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	s:rontium 38		yttrium 39	zirconium 40	n obiu⊓ 41	molybdenum 42	technetum 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin	antimony	tellurium	iocine	xenon
The second second								0. 223	AND THE PARTY OF T	Charles Access	_			50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121 76	127.60	126.90	131.29
caesium 55	parium 56	57-70	lutetium 71	hafnium 72	tantalum 73	tungsten 74	rhenlum 75	osmium 76	irdium 77	platinum 78	gold 79	mercury 80	thallium	lead	bismuth	polonium	astatire	radon
								120	=		_		81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9*	137.33		174.97	178.49	180.95	183.84	185.21	190.23	192.22	195.08	196.97	200.59	204.38	207 2	208 98	[209]	[210]	[222]
francium 87	adium:	89-102	lawrendum 103	rutherfordium 104	dubnium 105	seaborg um 106	bohrium 107	hassium 108	meitnerium 109	ununnilicm 110	muinununu 111	ununbium 112		urunquadium 114				
5.00			623								2502 96 15	5.000.000.00						
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	uun	Uuu	duu		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				

*Lanthanide series

**Actinide series

lanthanum	œrium	praseodymium	neodymlum	muldemcrq	samarium	eu.otinu	gadolnium	tertium	dysproslum	nolmlum	erblum	thulium	ytteroium
57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
138.91	140 12	14C.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
actinium	thorium	pro:actinum	uranium	naptınım	plulonium	americium	curium	berkelium	californum	eins:einium	fe-mium	mende evium	nobelium
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
[22?]	232 04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]